ROLE OF INTERNAL UNSTEADY PROCESSES IN
PROBLEMS OF THE MOTION OF TWO-PHASE
STREAMS
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and E. N, Gol'dberg

A model of a two-phase stream is developed which allows one to calculate the basic hydraulic
and continuity characteristics of the stream as well as the mode of flow on the basis of the
allowance for the unsteadiness of the motion of the separate phases.

The existing analytical models of the flow of a two-phase stream do not take into account one of its
most important properties — the unsteadiness of the motion of the separate phases [1-13].

This unsteadiness is manifested in the appearance of pulsations, stable and very substantial in size, in
the pressure, frictional shear stress at the channel walls, and density of the two-phase stream [14-21].

The one-dimensional, adiabatic, stabilized flow of a two-phase stream through channels of constant
cross section or local resistances is under discussion. The motion of the two-phase mixture is assumed to
be pressurized and high-velocity but subsonic. The compressibility of the medium is not taken into account,
which is valid when AP/P « 1,

The real two-phase stream is replaced by a quasihomogeneous stream but with time-varying velocity
Wmi and density ppyi of the mixture, which are determined by the expressions
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Another basic assumption consists in the possibility of calculating the instantaneous values of AP in
local resistances or of (—0P/8z) in channels of constant cross section using the well-known quadratic equa-
tions of the following type:

AP = 4 pmi(r)QwI:;ii(T) , (3)
P Pmi(T) Wiy () ,
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Since we are considering high-velocity flow, it is assumed that the hydraulic resistance coefficients Z
and £ are constants which do not depend on the stream velocity wyi or the time 7. Since

Gy G, 01— Ps .
W, = Do X= ; Yo=—"2; G =G, + G, (5)
’ go,F G ’ P2 mi :
Eq. (3) takes the form
AP() = — (G () + (14 70) G(3) + (2 ) Gy (9) Gy (3. (6)
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Henceforth the averaging of any basic time-varying characteristic of the two-phase stream (x, 9,8,
Pmis, AP, w;) will be performed as follows:

I. 1. Polzunov Central Scientific-Research Institute of Boilers and Turbines, Leningrad. Translated
from Inzhenerno- Fizicheskii Zhurnal, Vol. 30, No. 2, pp. 211-220, February, 1976. Original article sub-
mitted January 30, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No p.art
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for 37.50.

133



T

X = —1;— j 1 () d (). (1)

[i]
For the periodic functions T is the oscillation period of the variable quantity.
The application of the averaging rule (7) to Eq. (6) gives the following result:

AP= —E 1@+ 1+ 1) @+ @ + %) GO (8)
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In accordance with the steady homogeneous model [3, 10] of a two-phase stream the calculated pressure
losses are determined by the following equation:

Mo = e G (L + 50 (®

where the weight flow-rate vapor content is calculated from the standard dependence
' - G
X, = —2— (10)
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On the basis of Egs. (9) and (10) we obtain
AP, = ——5 (G + (1 + 1) G + @+ 1) G Gl (11)

hom™ 2g291F°
Equations (8) and (11) make it possible to obtain an expression for the ratio of the pressure drop in an
unsteady two-phase stream to that calculated from a steady homogeneous model for local resistances:
AP Gi+(1+%) G+ (2+v) GG) (12)
AR hom (G + (1 + o) (Go)* + 2+ 7o) G1 G,

We obtain exactly the same expression for the coefficient ¥ in an analysis of Eq. (4) for the unsteady
motion of a two-phase stream in a straight channel of constant cross section.

¥ =

By definition, the dimensionless coefficient ¥ fully coincides with the so-called coefficient of inhomo-~
geneity of a two-phase stream [9, 10].

__ Inthe case of the absence of pulsations of the phase flow rates with time, when (Gj)* = G and GG, =
GGy, the coefficient ¥ equals 1.0 according to (12).

In all other cases the quantity ¥ can be either larger or smaller than ¥ = 1.0 depending on the nature
of the pulsations of the phase flow rates with time.

With one-dimensional flow of a mixture in a local resistance the instantaneous value of the power is de-
termined by the expression

L Gh [ 4@yl
N@)=AP(M)w,;(x) F=1 S0 P . (1349)

Similarly, for the power of a two-phase stream in a channel of constant cross section, taken per unit

length of the channel, we have

oN__ __6_P_ . =§— 3 2 .
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On the basis of Egs. (7), (134), and (13) we have for the time-averaged powers of an unsteady stream

Ne — & G 2
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The corresponding powers of a steady, homogéneous two-phase stream have the form
Moom™ T 9 gs Fio, (Grm 1+ xf'Yo ) ‘ (16}
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Dividing Eq. (14) by Eq. (16) or (15) by (17), we obtain the following expression for the ratio of the
powers of unsteady and steady, homogeneous, two-phase streams:

E= _Gfsni(l + XXO)Z . (18)
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With allowance for Eqgs. (5) and (10) the expression (18) takes the following form:
Eo _ Gl (14)? G+ (34 21) GiGy + (1 +70) (3 + 1) G:G7
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Depending on the character of the pulsations in the flow rates Gj of the phases with time the coefficient
E, like ¥, can be larger than, less than, or equal to unity (the latter occurs when Gj = const}. If the coef-
ficient ¥ characterizes the degree of inhomogeneity of an unsteady two-phase stream from the point of view

of pressure losses in the stream, then the coefficient E is the analogous energetic characteristic of an un-
steady two-phase stream.

(19)

The character of the time variation in the flow rates Gj of the phases is not known a priori. At present
it does not seem possible to establish it directly by experimental means.

In this connection two types of periodic oscillations of the phase flow rates with time are analyzed be-
low: the type of rectangular pulses (sharply expressed pulsations in the phase flow rates) and sinusoidal os-
cillations (smoothed harmonic variations in the phase flow rates with time).

The mathematical notation for the first type of oscillations have the following form:

for 0t G =Gy =const;; G,= G, = canst,, )

Gi= Gmilz Gyy + Gy = consty, i (20)
for 1y <<t << (1, + 1,) Gy = Gy = consty; Go= Gpo= constf,, I
G= Gmiz: G;5G,, = consty,

The pulse amplitudes Gjj and their duration 7j, just like the total oscillation period T = 71 ¥ 7y, are
completely arbitrary.

The instantaneous values of the weight vapor content x; accordingly also vary abruptly with time:

for 0<Ci<<ty X%3= # ,
Gll T G21 (21)
G,
for T,<t<<T X,= —— 2 .
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The mathematical notation for the harmonic type of oscillations in the phase flow rates with arbitrary
amplitudes, frequencies, and phase shifts in time have the form

Gy = Gy, [1 -+ nsin o, T+ 4], (22)
Gy = Gy [1 4+ msin (0,7 + Ay)).
It is obvious that ,
= = - ¢
Gl B GIO’ GZ = G20 and xf =. Ef_—i’&; . (23)

To determine the concrete values of the dynamic and average hydraulic characteristics of the unsteady
two-phase stream under consideration one assumes that there is a minimum in the energy losses in this
stream. The principle of a kinetic energy minimum or a minimum in the entropy rise in a steady two-phase
stream has been used successfully by a number of authors {22-24] in the theoretical analysis of the critical
discharge of a two-phase mixture through nozzles and pipes.



From the mathematical point of view the application of the principle of a minimum in energy losses to
the unsteady flow of a two-phase stream comes down to a search for the minimum value of the energetic
parameter E of (19) for fixed values of vy, G, and G, (or 7o and Xf) with allowance for the concrete form
of the oscillations in the phase flow rates determined by Egs. (20) or (22). As a result of the minimization of
the power E of a two-phase stream having oscillations in the phase flow rates of the rectangular pulse type
(20) in the regions of variation 0 =Xf =1.0 and 0 <y, < * ©, one obtains the following:

for 0<<T<<T; ¥ =0 (flow of gas or vapor),

fc’)r_:’t;1 <T<L (T +T) Xy =1,0 (flow of liquid), (24)
T (1) % ‘
: T (1 —-xf)
In this case the expression (12) for the coefﬁc1ent of inhomogeneity ¥ takes the form
g (I +xf (14w~ I+ % [+ 990" =11y (25)
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Correspondingly, the following results are obtained for the harmonic law (22):

in region 0<;f< 1.0 o =0, =0, 7"1"—}‘12 =1,
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If one assumes that the instantaneous values of the true volumetric gas and vapor contents coincide
with the corresponding instantaneous values of the volumetric flow-rate gas and vapor contents of the stream,
i.e., that ¢(T) = B(7), then the time average of the true volumetric gas or vapor content of an unsteady two-
phase stream is determined by the following expression:

o=f=—— (pwan @n
J
0

where, in accordance with the standard definition,
B(1) = Vo (7) - G, (%) _
: ’ Ve(m) +V, (@ Gy (v) + (1 + 1) G (%)
The expressions (27) and (28), with allowance for the results (24)-(26) obtained above on the minimization of
the power of the stream and the well-known relationship of X§ with 8¢

(28)
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Fig. 1. Dependence ¥ = ¥(Xjy, 1_3) for irreversible pressure losses in local re-
sistances for a steam—water stream: a) Janssen's experiments [14] with short
inserts in a rectangular channel, P =70 bars, Wey = (1.14-9.15) m/sec; b) ex-
periments [30] for the entrance to a pipe from a collector, P = 60 bars, Wey =
(0.25-1.5) m/sec; c¢) experiments [30] for entrance to a pipe from a collector,
D = 180 bars, Wey = (0.25-1.5) m/sec; 1, 2) calculation by Eq. (25) for P =65
and 180 bars. Xf, %.

Fig. 2. Dependence ¥ = @(Bf) in a narrow washer cross sections: 1) calcula-
tion by steady homogeneous model @ :Ef; 2) by Armand's [4, 5] equation ¢ =
0.833Ef; 3) calculation by Eq. (30) for ¥ = 800; 4), 5) experimental data of
present work for subcritical and critical flow, respectively, of an air—water
stream in a cylindrical washer of 40 mm inside diameter, 78 mm outside
diameter, and 12 mm thick with P = (0.6-1.5) bars.

made it possible to obtain the following exp-ressions for ¢ inthe case of the laws (20) and (22) for the re-

spective time variations in phase flow rates:

o= Ef (30}
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The theoretical calculation conducted fully predetermines the concrete physical pattern of flow of an
unsteady two-phase stream.

In the case of the discontinuous change (20} in the phage flow rates with time a slug mode of flow of the
two-phase mixture occurs in the entire range of vapor contents 0 < X ¢ < 1.0 with the successive alternation
of liquid plugs and vapor slugs, since x3 = 0 and x; = 1.0,

The duration of the existence of the vapor slugs and liquid plugs in the stream cross section under con-
sideration varies with an increase in x¢, shifting toward an increase in the former as X approaches 100%,
since T9/T1= (1 F ')/0)2/3 [X¢/(1 —Z¢)] according to (24).

In the flow of two-phase streams in pipes such a pattern is observed only in a comparatively narrow
range of variation of X¢ when the slug mode of flow occurs.

In the movemert of a two-phase stream through local resistances of the type of thin throttle washers,
sudden narrowings, or turns of the channel the unsteady process described above evidently can occur in al-
most the entire region of variation of Xf. In fact, in this case stagnant vortex zones of very considerable
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Fig. 3. Modes of flow of a two-phase stream in a pipe with a har-
monic law of oscillations of the phase flow rates in the stream:
BF, SF, DAF) bubble, slug, and disperse-annular modes of flow;
1) amplitude m; 2_) amplitude n; 3) BF—SF boundary according
to Baker [29]; 4) Bpo, for Yo = 20; 5) Bpo, for ¥o = 20; 6) SF—
DAF boundary according to Haberstroh and Griffith [14]; a, b, c,
d BF, SF, emulsion flow and DAF according to experiments of
Bergles and Hsieu [14] in a pipe with P = 70 bars. Fry; =
Wmi/gd*

size form ahead of the washer or local narrowing or in the region of the outer radius of a turn in the channel.
Because of the high inertia of the liquid and its predominent movement along the channel walls considerable
masses of liquid can concentrate in these zones for any vapor contents of the two-phase stream. Periodic
surges of considerable amounts of liquid into the main core of the stream, which are capable of completely
covering the narrow cross section of the local resistance for a short time, are possible under the effect of
the gas stream. Moreover, at the times of accumulation of liquid in the stagnant zone the lighter and more
mobile gaseous phase predominantly moves through the narrow cross section.

In connection with this, the theorétical results (25) and (30) for ¥ and @, obtained for oscillations of the
rectangular pulse type (20) in the flow rates of the phases in the stream, are compared in Figs. 1 and 2 with
experimental data for the movement of two-phase streams through local resistances of the type indicated

above.

The sinusoidal oscillations G; and G; of (22) correspond to a different structure and dynamics of the
development of a two-phase stream with an increase in xf. This conclusion follows from an analysis of Eq.
(26) for the relative amplitudes n and m of the oscillations of the phase flow rates in different regions of

variation in the vapor content Xf.
The character of the variation in n and m with an increase in x¢ from 0 to 1.0 is presented in Fig. 3.

Let us analyze in more detail, for example, region I of low vapor contents 0 < X< Xhoys where the
average liquid flow rate Gy = Gjg is predominantly much higher than the average vapor (gas) flow rate
G, = Gyg. The relative amplitudes n of the oscillations in the liquid flow rate in this region are slight,
whereas the relative amplitudes m of the oscillations in the vapor flow rate are maximal, since m =1.0 in
the entire region of variation 0 < Xf < Xy,

Periodically, when sin wT = 1.0, a fixed cross section of the stream is fully covered over by liquid -
without vapor (gas) inclusions (G, = 0). At the other times Gy > 0 and Gz > 0 in this stream cross section,
i.e., vapor and liquid are present at the same time. Such a process occurs when isolated vapor (or gas)
bubbles are present in a continuous liquid stream, i.e., with a bubble mode of flow of a two-phase stream in
pipes and channels. :

A similar analysis leads to the conclusion that in region II gbo1 =Xf= -?;boz there is a slug mode of
flow of a two-phase stream, while in region III §b02 < Xf = 1.0 there is a disperse-annular wave mode of flow
with emergence into pure vapor. )

The replacement of the bubble mode of flow by the slug mode and of the slug mode of flow by the dis~
perse-annular wave mode occurs at the limiting values X, and xpo, of the flow-rate vapor content.

This sequence of change of the structure of the two-phase stream under consideration with an increase
in the vapor content Xf is presented on the left side of Fig. 3 in the form of the conventional flow patterns of

this stream corresponding to certain values of Xf.
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Fig. 4. Dependence ¥ = ¥(Bf) for horizontal pipes (air—water): 1,
2} calculation by Egs. (26) for v = 400 and 800; 3) region of ex-
perimental values for P ~ 1 bar from data of [9]; 4} authors' ex-
periments, P = 2 bars, Wy = 1 m/sec, I/d = 30; lgqh = 300d,

d= 20 mm, .

Fig. 5. Dependence @ = ¢(Bf, vo) for flow of 2 steam—water stream
in annular slots (1-4) [26] and pipes 5 [27]: a-d) P = 20, 40, 70, and
100 bars or vy = 86, 40, 20, and 12, respectively; dashed curve:
calculation by steady homogeneous model; solid line: by Egs. (31); -
1-4) wy = 0.5, 1.0, 2.0, and 4.0 m/sec; 7) Bpos; 6) Bho,-

Asg is known, a similar structure of a two-phase stream with the corresponding replacement of the
modes occurs in the pressurized flow of two-phase streams in straight pipes and channels of constant cross
section [11, 14, 25].

In connection with this the theoretical results (26) and (31) for ¥, -é, and the boundaries Bboi of the
modes of flow (31), obtained in an analysis of sinuscidal oscillations of the phase flow rates with time, are
compared in Figs. 3-5 with experimental hydraulic characteristics measured in the flow of two-phase
streams in channels and pipes. '

The results of these comparisons must be taken as positive, not only in a qualitative; but also in 2
quantitative, respect.

In summing up, one must conclude that the proposed unsteady model of a two-phase mixture quite satis-
factorily describes the basic hydraulic characteristics of a real, high~velocity, incompressible, stabilized,
adiabatic, two-phase stream.

LITERATURE CITED

1. 8. G. Teletov, Dokl. Akad. Nauk SSSR, 50, Novaya Ser. (1945).

2. R. C. Martinelli and D. B, Nelson, Trans. Amer. Soc. Mech. Eng., 70, 695-702 (1948).

3. 8. 8. Kutateladze, Sov. Kotloturbostr., No. 2 (1946).

4. A, A, Armand and E. 1. Nevstrueva, Izv. Vses. Teplotekh. Inst., No. 2 (1950).

5. A. A, Armand, in: Hydrodynamics and Heat Exchange during Boiling in High-Pressure Boilers {in
Russian], Izd. Akad. Nauk SSSR, Moscow (1955).

6. S, G, Teletov, in: Hydrodynamics and Heat Exchange during Boiling in High-Pressure Boilers {in

Russian], Izd. Akad. Nauk SSSR, Moscow (1955). .
7. 8. 8. Kutateladze and M, A, Styrikovich, Hydraulics of Gas—Liquid Systems [in Russian], Gos. Energet.
Izd., Moscow (1958).

138



8. M, Sil'vestri, Problems of Heat Exchange [in Russian], Atomizdat, Moscow (1967).
9. 8. G. Teletov, Tr. Tsentr. Kotloturh. Inst., Leningrad, No. 59 (1965).

10. O. M. Baldina, V. A, Lokshin, D. F, Peterson, and A, L. Shvarts, Tr. Tsentr. Kotloturb. Inst., Lenin-
grad, No. 59 (1965). '

11. L. S. Tong, Boiling Heat Transfer and Two-Phase Flow, Wiley, New York (1965).

12, Normative Method of Hydraulic Calculation of Steam Boilers [in Russian], Vol. 1, Part 33, Tsentr.
Kotloturb, Inst., Leningrad (1973),

13. 8, S. Kutateladze, Boundary Turbulence [in Russian], Izd. Nauka, Sibirsk. Otd. Akad. Nauk SSSR,
Novosibirsk (1973).

14, V. M. Borishanskii {(editor), Advances in the Field of Heat Exchange [Russian translation], Mir, Mos-
cow (1970).

15. S, 8, Kutateladze, A. P, Burdukov, V. E, Nakaryakov, Yu. V, Tatevosyan, and V. A, Kuz'min, Dokl.
Akad. Nauk SSSR, 200, No. 21 (1971).

16. V. P. Bobkov, M. Kh, Ibragimov, and V. L. Subbotin, Inzh.-Fiz. Zh., 20, No. 4 (1971).

17. N, Miller and R. E. Mitchell, J. Brit. Nucl. Energy Soc., 9, No. 2, 94-100 (1970).

18, Shigeru Hinata, Bull. Jap. Soc. Mech. Eng., 15, No. 88, 1228-1235 (1972).

19. K. Nishikawa, K. Sekoguchi, and T. Fukano, Bull. Jap. Soc. Mech. Eng., 12, No. 54 (1969).

20. G. V. Tsiklauri, Teplofiz. Vys. Temp., 10, No, 6 (1972).

21. T, Dallavalle, T. Rossini, and G. Vanoli, Energia Nuclear, 10, No. 6, 332-342 (1973).

22. F.J. Moody, Trans. Amer. Soc. Mech. Eng., J. Heat Transfer, 87, No. 1, 134 (1965).

23. Zivi, Teploperedacha, No, 2, 139 (1964).

24. J. E, Gruver and R. W, Moulton, Amer. Inst. Chem. Eng. J., 13, No. 1, 52-60 (1967).

25, 8. S. Kutateladze (editor), Investigation of Turbulent Flows of Two-Phase Media [in Russian], Izd. Inst.
Teplofiz. Akad. Nauk SSSR, Novosibirsk (1973). '

26. A, G. Lobachev, E. A, Zakharova, B. A, Kol'chugin, G. G. Kruglikhina, and D, A, Labuntsov, Heat and
Mass Transfer, Collection of Proceedings of Fourth All-Union Conference on Heat and Mass Exchange
[in Russian], Vol. 2, Part 1, Minsk (1972}, p. 299.

27. Z. L. Miropol'skii and R. L. Shneerova, Teplofiz. Vys. Temp., 1, No. 1 (1963).

28. D. U. Merdok, Teor. Osnovy Inzh. Raschet. 84, No. 4 (1962).

29. O. Baker, Oil Gas J., 53, 185-190 (1954).

30. 8. I Mochan, in: Problems of Heat Transfer and the Hydraulics of Two-Phase Media [in Russian], Gos.
i:“,nerget. Izd., Moscow— Leningrad (1961).

31. 1. I Morozov and P. P. Vasiltev, Teploenergetika, No. 1 (1968).

140



